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Abstract Using the recession analysis we study necessary and sufficient conditions for the
existence and the stability of a finite semi-coercive variational inequality with respect to data
perturbation. Some applications of the abstract results in mechanics and in electronic circuits
involving devices like ideal diode and practical diode are discussed.
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1 Introduction and position of the problem

The theory of variational inequalities, with its wide range of applications in engineering,
economics, finance, industy and mechanics, has become a well-established and fruitful area
of research. After the fundamental work of Lions and Stampacchia [18], this theory have been
studied intensively. With the contributions of Brézis [7,8], Duvaut Lions [10], Browder [9],
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Kinderlehrer and Stampacchia [16], Panagiotopoulos [19], Goeleven Motreanu [13] (among
others), this field has known an increasing growth in both theory and applications. Several
books and articles have documented the basic theory, the numerical approach and applications
in applied science as well. This theory was used as a tool for the study of partial differential
equations with applications essentially drawn from mechanics (Signorini problem, obstacle
problems in elasticity, etc).

We consider the following finite dimensional variational inequality

VI(M, q,�, K )

{
Find u ∈ K such that
〈Mu + q, v − u〉 + �(v) − �(u) ≥ 0, ∀v ∈ K

where M ∈ IRn×n is a matrix, q ∈ IRn is a vector, K is a nonempty closed convex set of R
n

and � : R
n → R ∪ {+∞} is a proper convex and lower semicontinuous function.

We denote by:

Dom (�) = {v ∈ R
n : �(v) < +∞},

the effective domain of �.
Let us now suppose that the assumptions (H) described below are satisfied:

(H1) M ∈ R
n×n is a symmetric and positive semidefinite matrix;

(H2) � : R
n → R ∪ {+∞} is a proper, convex, lower semicontinuous and bounded from

below;
(H3) K ⊂ R

n is a closed and nonempty convex set
(H4) 0 ∈ Dom � ∩ K .

Several theoretical existence results for VI(M, q,�, K ) in general reflexive Banach spaces
and governed by a general operator M (not necessarily linear) are well known when a coer-
civeness condition hold for the operator M . We can cite for instance the contributions of
Lions [17], Brézis [7,8], Browder [9] etc …. However, the variational formulation of many
engineering problems leads generally to non-coercive variational inequalities (e.g., prob-
lems in mechanics which admits nontrivial virtual rigid body displacement). These problems
are formulated by semi-coercive variational inequalities and was studied first by Fichera
[12] and Lions and Stampacchia [18], Duvaut and Lions [10] (for problems with frictional
type functionals). Recently many mathematicians and engineers has focused their attention
on non-coercive unilateral problems, using several different approaches such as the critical
point theory, the Leray-Schauder degree theory, the recession analysis or the regularization
method by approximating non-coercive problems by coercive ones (see e.g., [1,4–6,21,22]
and references cited therein). The main concern of these contributions is the obtainment of
necessary or sufficient conditions for the solvability of such problems in a general setting by
imposing some compacity conditions and some compatibility conditions on the right hand
term q . More recently, Adly et al. [2,3] has considered the situations in which the existence of
the solution is stable with respect to small uniform perturbations of the data of the problem.
This result should be of great interest for problems in finance and engineering where the data
are known only with a certain precision and it is desired that further refinement of the data
should not cause the emptiness of the set of solutions.

Our aim is thus to characterize the sensitivity of VI(M, q,�, K ) with respect to the pertur-
bations of the data M, q,� and K . In this paper, we only discuss the case of finite variational
inequalities. Some applications of our main results in electronics and mechanics are given
in Sect. 4.
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2 Preliminaries and notations

Let us first recall some background results from convex analysis which will be used later.
Let K be a closed convex subset of R

n , the recession cone of K is the closed convex cone

K∞ :=
⋂
t>0

[
K − x0

t

]
,

with x0 arbitrarily chosen in K .
We denote by �0(R

n) the set of all proper, convex and lower semicontinuous extended
real valued functions � : R

n → R ∪ {+∞}.
Let � ∈ �0(R

n) be given. The recession function �∞ of � is defined by:

�∞(x) := lim
λ→+∞

�(x0 + λx) − �(x0)

λ
, (1)

where x0 ∈ Dom � is an arbitrary element. We set

ker �∞ = {x ∈ R
n : �∞(x) = 0},

which is clearly a closed convex cone in R
n .

The Fenchel conjugate �∗ : R
n → R ∪ {+∞} of � is defined by:

�∗(x∗) = sup
x∈Rn

{〈x∗, x〉 − �(x)
}
.

We recall also that the convex subdifferential of � at a point x ∈ Dom � is defined by:

∂�(x) = {w ∈ R
n : 〈w, y − x〉 ≤ �(y) − �(x), ∀y ∈ R

n}.
The effective domain of the multivalued mapping ∂� is defined by

D(∂�) = {x ∈ R
n : ∂�(x) 
= ∅}.

We note that

D(∂�) ⊂ Dom �.

The range of the multivalued mapping ∂� is defined by

R(∂�) =
⋃

x∈Rn

∂�(x).

We have the following Fenchel correspondence:

w ∈ ∂�(x) ⇐⇒ x ∈ ∂�∗(w).

Hence,
R(∂�) = D(∂�∗) ⊂ Dom �∗. (2)

The indicator function to a convex set K is given by:

IK (x) =
{

0 if x ∈ K
+∞ if x 
∈ K .

If K is a closed cone, its polar is defined by

K ◦ = {x∗ ∈ R
n : 〈x∗, x〉 ≤ 0, ∀x ∈ K }.
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The support function to K is defined by:

σK (w) = (IK )∗(w) = sup
x∈K

〈w, x〉.

We recall that the barrier cone of K is defined by:

B(K ) = {w ∈ R
n : sup

x∈K
〈w, x〉 < +∞} = Dom σK . (3)

It is well-known that if K is a non-empty closed and convex subset, then

B(K )◦ = K∞. (4)

Therefore,
B(K ) = (K∞)◦. (5)

We recall that for �1, �2 ∈ �0(R
n), the infimal convolution (or the epigraphical sum) is

defined by:
(�1��2)(x) = inf

y+z=x
{�1(y) + �2(z)} . (6)

We say that the infimal convolution is exact provided that the infimum appearing in (6) is
achieved.
We note that

Dom (�1��2) = Dom (�1) + Dom (�2). (7)

We recall that if �1 (or �2) is continuous on R
n , then

(�1 + �2)
∗ = �∗

1��∗
2 (8)

and the infimal convolution �∗
1��∗

2 is exact.
Let us finally recall the following proposition

Proposition 1 Let � ∈ �0(R
n) and p ∈ R

n be given. We have:

(i) p ∈ Dom �∗ ⇐⇒ �∞(w) ≥ 〈p, w〉, ∀w ∈ R
n;

(ii) p ∈ Int (Dom �∗) ⇐⇒ �∞(w) > 〈p, w〉, ∀w ∈ R
n \ {0}.

Proof For a proof see Corollary 13.3.4 in [20]. ��

3 Characterization results

The solutions set of VI(M, q,�, K ) will be denoted by

Sol(M, q,�, K ) := {u ∈ K : 〈Mu + q, v − u〉 + �(v) − �(u) ≥ 0, ∀v ∈ K }.
The following resolvent set will also play an important role

R(M,�, K ) = {−q ∈ R
n : Sol(M, q,�, K ) 
= ∅}.

Let us introduce the following function � : R
n → R ∪ {+∞} defined by

�(u) = 1

2
‖Qu‖2 + �(u) + IK (u), (9)

where Q = I − Pker(M) and Pker(M) denotes the orthogonal projector from R
n to ker(M).
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Remark 1 We first remark that VI(M, q,�, K ) is equivalent to the following variational
inclusion: find u ∈ K such that

0 ∈ Mu + q + ∂(� + IK )(u),

where IK denotes the indicator function of K . Hence,

−q ∈ Mu + ∂(� + IK )(u) ⊂
⋃

u∈Rn

(Mu + ∂(� + IK )(u)) ⊂ R(M) + R(∂(� + IK )).

Using (2), we get
−q ∈ R(M) + Dom (� + IK )∗. (10)

We have the following lemma.

Lemma 1 Suppose that the assumptions (H) hold. We have

Dom �∗ = R(M) + Dom (� + IK )∗.

Proof Let us note first that the function � defined in (9) can be rewritten

�(u) = 1

2
(distker(M)(u))2 + (� + IK )(u).

Using (8) for �1 = 1
2 (distU (·))2 (which is convex and continuous) and �2 = (� + IK ) ∈

�0(R
n), we get

�∗ =
[

1

2
distker(M)(·)2

]∗
� [� + IK ]∗ .

Hence

Dom �∗ = Dom

[
1

2
distker(M)(·)2

]∗
+ Dom [� + IK ]∗ .

On the other hand, we have:

1

2
distker(M)(·)2 = 1

2
‖ · ‖2 � Iker(M).

Using (8) again, we obtain[
1

2
distker(M)(·)2

]∗
= 1

2
‖ · ‖2 + Iker(M)⊥ .

Hence

Dom
[
distker(M)(·)2]∗ = ker(M)⊥.

Consequently,
Dom �∗ = R(M) + Dom [� + IK ]∗ . (11)

��
Proposition 2 Suppose that assumptions (H) hold. Then a necessary condition for the exis-
tence of a solution of VI(M, q,�, K ) is that

〈q, w〉 + �∞(w) ≥ 0, ∀w ∈ ker(M) ∩ K∞. (12)
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Proof Using Remark 1 and Lemma 1, we have

R(M,�, K ) ⊂ Dom (�∗).

Using Part (i) of Proposition 1, we have

Dom (�∗) = {g ∈ R
n : 〈g, w〉 ≤ �∞(w), ∀w ∈ R

n}.
It can also easily be checked that the recession function �∞ associated to � in (9) is given
by

�∞(w) = Iker(M)(w) + �∞(w) + IK∞(w). (13)

Consequently if Sol(M, q,�, K ) 
= ∅ then −q ∈ R(M,�, K ) and thus:

〈q, w〉 + �∞(w) ≥ 0, ∀w ∈ ker(M) ∩ K∞

which competes the proof of Proposition 2. ��
Proposition 3 Let C be a non-empty closed convex subet of R

n. We have

Int B(C) 
= ∅ ⇐⇒ C∞ ∩ (−C∞) = {0}, (14)

where B(C) denotes the barrier cone of C defined in (3).

Proof Since B(C) = Dom (IC )∗, we have

Int B(C) 
= ∅ ⇐⇒ Int Dom (IC )∗ 
= ∅.

Using Part (ii) of Proposition 1 for � = IC , we have

Int Dom (IC )∗ = {g ∈ R
n : 〈g, w〉 < IC∞(w), ∀w ∈ R

n, w 
= 0}.
Hence,

Int B(C) = {g ∈ R
n : 〈g, w〉 < 0, ∀w ∈ C∞, w 
= 0}.

Therefore,

Int B(C) = Int (C∞)◦.

Consequently, if Int B(C) 
= ∅ then there exists g ∈ R
n such that:

〈g, w〉 < 0, ∀w ∈ C∞, w 
= 0,

which implies that necessarily C∞ ∩ −C∞ = {0}.
Conversely, suppose that C∞ ∩ −C∞ = {0}. Arguing by contradiction, let us sup-

pose that Int (C∞)◦ = ∅. Since (C∞)◦ is cone, then there exists a linear subspace E of
R

n with 0 ≤ dimR(E) ≤ n − 1 such that: (C∞)◦ ⊂ E (see e.g. [14], p. 33). Therefore,
E⊥ ⊂ (C∞)◦◦ = C∞, where E⊥ is the orthogonal of E . This contradicts the assump-
tion C∞ ∩ −C∞ = {0} (since dimR E⊥ ≥ 1 and E⊥ ⊂ C∞). Hence, Int (C∞)◦ 
= ∅.
Consequently, Int B(C) 
= ∅, which completes the proof of Proposition 3. ��
Remark 2 A subset C satisfying the condition Int B(C) 
= ∅ is called well-positioned (see
Proposition 2.1 [2]). An other characterization of this class of convex subsets in infinite
dimensional spaces is also given in Lemma 2.4 [2] and Proposition 2.1 [3]. Note that in finite
dimensional spaces every subset which contains no line is well-positioned.
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Definition 1 The set defined by{
q ∈ R

n : 〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞ \ {0}} ,

is called the compatibility set of the variational inequality VI(M, q,�, K ).

The following proposition shows that the topological interior of the resolvent set coincides
with the compatibility set of the variational inequality VI(M, q,�, K ).

Proposition 4 Suppose that assumptions (H) hold. We have

Int R(M,�, K ) = {
q ∈ R

n : 〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞ \ {0}} .

Proof Using Remark 1 and Lemma 1, we have Int R(M,�, K ) ⊂ Int Dom �∗.
By part (ii) of Proposition 1, we have

Int Dom (�∗) = {
g ∈ R

n : 〈g, w〉 < �∞(w), ∀w ∈ R
n \ {0}} .

Using (13), we get

Int R(M,�, K ) ⊂ {
q ∈ R

n : 〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞ \ {0}} .

Let us prove now the converse, i.e., let q ∈ R
n such that

〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞ \ {0}. (15)

We prove that −q ∈ R(M,�, K ). Let (εn)n be a sequence of non-negative real num-
bers such that εn → 0+ as n → +∞. Let un ∈ K be the unique solution of problem
VI(M + εn I,�, q, K ). We claim that the sequence (un) is bounded. Arguing by contradic-
tion, suppose that there exists a subsequence, still denoted (un) such that ‖un‖ → +∞ as

n → +∞. We set wn = un

‖un‖ and along a subsequence, we may suppose that wn → w 
= 0.

It is clear that w ∈ K∞. We have

〈Mun + q, v − un〉 + εn〈un, v − un〉 + �(v) − �(un) ≥ 0, ∀v ∈ K . (16)

Setting v = 0 in (16), we get

〈Mun + q, un〉 + εn‖un‖2 + �(un) − �(0) ≤ 0.

Dividing by ‖un‖2 and passing to the limit as n → +∞, we get 〈Mw,w〉 ≤ 0. Since
M is symmetric and positive semidefinite, we have w ∈ ker(M) and consequently w ∈
ker(M) ∩ K∞ \ {0}.
On the other hand dividing (16) by tn = ‖un‖ and using the fact that 〈Mw,w〉 ≥ 0, we
obtain

〈q, wn〉 + �(tnwn)

tn
− �(0)

tn
≤ 0.

Passing to the limit, we get

〈q, w〉 + �∞(w) ≤ 0,

which is a contradiction to the condition (15). Thus the sequence (un) is bounded and there
exists a subsequence, again denoted (un) such that un → u as n → +∞. Passing to
the limit as n → +∞ in (16), we show that u is a solution of VI(M, q,�, K ). Hence
−q ∈ R(M,�, K ). Therefore,

Int Dom (�∗) ⊂ R(M,�, K ),
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which implies that

Int Dom (�∗) ⊂ Int R(M,�, K ).

Consequently,

Int R(M,�, K ) = Int Dom (�∗) = {
q ∈ R

n : 〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩
K∞ \ {0}},

which completes the proof of Proposition 4. ��
The following result characterizes the non-emptyness of the topological interior of the resol-
vent set R(M,�, K ) associated to the variational inequality VI(M, q,�, K ).

Proposition 5 Suppose that assumptions (H) hold. We have

Int R(M,�, K ) 
= ∅ ⇐⇒ − (ker(M) ∩ K∞ ∩ ker(�∞))
⋂

(ker(M) ∩ K∞ ∩ ker(�∞))

= {0},
i.e., the cone (ker(M) ∩ K∞ ∩ ker(�∞)) is pointed.

Proof We have
Int R(M,�, K ) 
= ∅ ⇐⇒ Int Dom (�∗) 
= ∅. (17)

On the other hand, we have(
Dom (�∗)

) × {−1} = B(epi �) ∩ (
R

n × {−1}) , (18)

where B(epi �) is the barrier cone to epi (�).
Indeed, let p ∈ Dom �∗ be given. Then there exists Mp ∈ R such that

〈p, x〉 − �(x) ≤ Mp, ∀x ∈ R
n,

which is equivalent to〈
(p,−1), (x, �(x))

〉
Rn×R

≤ Mp, ∀x ∈ R
n .

Therefore, 〈
(p,−1), (x, λ)

〉
Rn×R

≤ Mp, ∀(x, λ) ∈ epi (�).

Hence,

(p,−1) ∈ B(epi �).

Now let (p,−1) ∈ B(epi �) ∩ (Rn × {−1}) . Then there existe Mp ∈ R
n such that〈

(p,−1), (x, λ)
〉
Rn×R

≤ Mp, ∀(x, λ) ∈ epi (�).

In particular for (x, λ) = (x, �(x)), we have

〈p, x〉 − �(x) ≤ Mp, ∀x ∈ R
n .

Consequently,

(p,−1) ∈ (
Dom (�∗)

) × {−1}.
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Using (17) and (18), we have

Int R(M,�, K ) 
= ∅ ⇐⇒ Int B(epi �) 
= ∅. (19)

Using Proposition 3 for C = epi �, we have

Int B(epi �) 
= ∅ ⇐⇒ ((epi �)∞) ∩ (−(epi �)∞) = {0}. (20)

Since, (epi �)∞ = epi �∞ we get

Int R(M,�, K ) 
= ∅ ⇐⇒ ((epi �∞)) ∩ (−(epi �∞)) = {0}. (21)

Since � is bounded from below, then � is also bounded from below. Hence, �∞ ≥ 0 and it
is then easy to check that:

((epi �∞)) ∩ (−(epi �∞)) = ((ker �∞) × {0}) ∩ (−(ker �∞) × {0}) .

Therefore,

Int R(M,�, K ) 
= ∅ ⇐⇒ ((ker �∞) × {0}) ∩ (−(ker �∞) × {0}) = {0}. (22)

Consequently,

Int R(M,�, K ) 
= ∅ ⇐⇒ ((ker �∞)) ∩ (−(ker �∞)) = {0}. (23)

Using (13), it is easy to see that

Int R(M,�, K ) 
= ∅ ⇐⇒ − (ker(M) ∩ K∞ ∩ ker(�∞))
⋂

(ker(M) ∩ K∞ ∩ ker(�∞))

= {0}, (24)

which completes the proof of Proposition 5. ��

4 A stability result

Let us now study the stability of the variational inequality VI(M, q,�, K ) in the following
sense.

Definition 2 One says that the variational inequality VI(M, q,�, K ) is stable provided that
there exists ε > 0 such that for any symmetric and positive semidefinite matrix Mε , any
vector qε ∈ q + εBn (here Bn denotes the open unit ball in R

n), any proper lower semicon-
tinuous bounded from below convex function �ε , and any non-empty closed convex set Kε

satisfying the following conditions

0 ∈ Dom �ε ∩ Kε and ker(M)∩ker(�∞)∩ K∞ = ker(Mε)∩ker((�ε)∞)∩(Kε)∞, (25)

the perturbed problem V I (Mε, qε,�ε, Kε) has at least one solution.

Before starting our study, let us first give some simple examples to motivate the notion of
stability of VI(M, q,�, K ) with respect to small perturbations.

Example 1 Set

M =
(

0 0
0 0

)
, K1 = {(x, y) ∈ R

2 : y ≥ 0}, � ≡ 0.
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In this case the resolvent set is given by

R(M, 0, K1) = {(q1, q2) ∈ R
2 : q1 = 0 and q2 ≤ 0}.

We note that in this case Int R(M, 0, K1) = ∅. Hence problem VI(M, q, 0, K1) is not stable
with respect to small perturbations of the right hand term q . More precisely, if we replace q
by qε such that ‖q − qε‖ ≤ ε for a given ε > 0, the solution set Sol(M, qε, 0, K1) of the
perturbed problem may be empty.
We note that in this case, we have

ker(M) ∩ K 1∞ ∩ ker(�∞) = R × R
+,

which is not a pointed cone.

Example 2 Let M and � as in Example 1 Consider now, the convex and closed subset K2

given by

K2 = {(x, y) ∈ R
2 : y ≥ x2}.

In this case the resolvent set is given by

R(M, 0, K2) = {(q1, q2) ∈ R
2 : q2 < 0} ∪ {(0, 0)}.

Here Int R(M, 0, K2) 
= ∅ and problem V I (M, q, 0, K2) is stable with respect to small
perturbations of the right hand term q .
We note that in this case, we have

ker(M) ∩ K 2∞ ∩ ker(�∞) = {0} × R
+,

which is a pointed cone.

We have the following existence and stability result related to the linear variational inequal-
ity VI(M, q,�, K ).

Theorem 1 Assume that assumptions (H) are satisfied. Then the variational inequality
VI(M, q,�, K ) is stable in the sense of Definition 2 if and only if

〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞, w 
= 0.

Proof We know from Proposition 4 that if

〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞ \ {0}
then

−q ∈ Int R(M,�, K ) 
= ∅.

Therefore, there exists ε > 0 such that

−q + εBn ⊂ Int R(M,�, K ). (26)

Let now Mε be a symmetric and positive semidefinite matrix, qε ∈ q + εBn , �ε be a proper
lower semicontinuous bounded from below convex function and Kε be a non-empty closed
convex set satisfying

0 ∈ Dom �ε ∩ Kε

123



J Glob Optim (2008) 40:7–27 17

and

ker(M) ∩ ker(�∞) ∩ K∞ = ker(Mε) ∩ ker((�ε)∞) ∩ (Kε)∞.

Using Proposition 4, we have

Int R(M,�, K ) = Int R(Mε,�ε, Kε).

Therefore,

−qε ∈ −q + εB ⊂ Int R(Mε,�ε, Kε).

Consequently, Sol(Mε, qε,�ε, Kε) 
= ∅. This ensures that the variational inequality
VI(M, q,�, K ) is stable in the sense of Definition 2.
Suppose now that the variational inequality VI(M, q,�, K ) is stable in the sense of Defini-
tion 2. Then there exists ε > 0 such that (taking Mε = M , �ε = � and Kε = K ) for every
qε ∈ q + εBn , Sol(M, qε,�, K ) 
= ∅. Therefore,

−q ∈ Int R(M,�, K ).

Then using Proposition 4, we obtain

〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞, w 
= 0, (27)

which completes the proof of Theorem 1. ��
Remark 3 It is clear that any symmetric and positive semidefinite matrix Mε such that
ker(M) = ker(Mε) and any function �ε ∈ �0(R

n) bounded from below such that �∞ =
(�ε)∞ and any non-empty closed convex set Kε such that K∞ = (Kε)∞ satisfy con-
dition (25). This the case for example if we take M = Mε , � − ε ≤ �ε ≤ � + ε,
K ⊂ Kε + εBn and Kε ⊂ K + εBn .

We have the following consequence of Theorem 1.

Corollary 1 Assume that assumptions (H) are satisfied. If the following compatibility con-
dition

〈q, w〉 + �∞(w) > 0, ∀w ∈ ker(M) ∩ K∞, w 
= 0, (28)

is satisfied, then VI(M, q,�, K ) has at least one solution.

Proof Take Mε = M , �ε = �, qε = q and Kε = K in Theorem 1. ��

5 Some applications

We give in this section some applications of Theorem 1 and Corollary 1.

Example 3 (Clipping circuit 1/Ideal diode) Let us consider the circuit of Fig. 1 involving a
load resistance R > 0, an input-signal source u and corresponding instantaneous current i ,
an ideal diode as a shunt element and a supply voltage E .

Figure 2 illustrates the ampere-volt characteristic of an ideal diode.
This is a model in which the diode is a simple switch. If V < 0 then i = 0 and the diode

is blocking. If i > 0 then V = 0 and the diode is conducting. We first see that the ideal diode
is described by the complementarity relation

V ≤ 0, i ≥ 0, V i = 0
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Fig. 1 Clipping circuit 1: diode
as shunt element

u(t)

R

V+

-

+

-

E

i

V

i

+ -

Fig. 2 Ideal diode model

that is also

min{−V, i} = 0.

The electrical superpotential of the ideal diode is

ϕD(x) = IR+(x), (x ∈ R)

Then

ϕ∗
D(z) = IR−(z), (z ∈ R)
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and the recession function of the electrical superpotential is:

(ϕD)∞(x) = ϕD(x), (x ∈ R).

We have also

∂ϕD(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IR− if x = 0

0 if x > 0,

∅ if x < 0

(x ∈ R)

and

∂ϕ∗
D(z) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

IR+ if z = 0

0 if z < 0,

∅ if z > 0

(z ∈ R).

The complementarity relation can be written as

V ∈ ∂ϕD(i) ⇐⇒ i ∈ ∂ϕ∗
D(V ) ⇐⇒ ϕD(i) + ϕ∗

D(V ) = iV .

Kirchoff’s voltage law gives

u = UR + VD + E

where UR = Ri denotes the difference of potential across the resistor and VD ∈ ∂ IIR+(i) is
the difference of potential across diode. Thus

E + Ri − u ∈ −∂ IIR+(i) (29)

which is equivalent to VI(R, E − u, 0, IR+), i.e.,

i ∈ R+ : (Ri + E − u)(v − i) ≥ 0, ∀v ∈ R+. (30)

Here R > 0 and for each E, u ∈ R, we may apply Theorem 1 to assert that (30) is stable in
the sense of Definition 2.
Moreover:

(30) ⇐⇒ E

R
+ i − u

R
∈ −∂ IIR+(i) ⇐⇒ − E

R
+ u

R
∈ i + ∂ IIR+(i)

⇐⇒ i = (idR + ∂ IIR+)−1(
u − E

R
) = 1

R
max{0, u − E}.

If u ≤ E then the diode is blocking while if u > E then the diode is conducting.
Let us now consider a driven time depending input t �→ u(t) and define the output-signal
t �→ Vo(t) as

Vo(t) = E + V (t).

The time depending current t �→ i(t) is given by

i(t) = 1

R
max{0, u(t) − E} (31)

and thus

Vo(t) = V (t) + E = u(t) − Ri(t) = u(t) + min{0, E − u(t)} = min{u(t), E}. (32)
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Fig. 3 Practical diode model

V

i

+ -

V1

V2

1

-100

V (Volts)
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This shows that the circuit in Fig. 1 can be used to transmit the part of a given input-signal
u which lies below some given reference level E .

Example 4 (Clipping circuit 1/concrete diode) Let us now consider the circuit in Fig. 1 with
a concrete diode.

Figure 3 illustrates the ampere–volt characteristic of a practical diode model.
There is a voltage point, called the knee voltage V1, at which the diode begins to conduct

and a maximum reverse voltage, called the peak reverse voltage V2, that will not force the
diode to conduct. When this voltage is exceeded, the depletion may breakdown and allow the
diode to conduct in the reverse direction. Note that usually | V1 | � | V2 | and the model is
locally ideal.

For general purpose diodes used in low frequency/speed applications, | V1 | � 0.7−2.5 V
and | V2 | � 5 kV; for high voltage rectifier diodes, | V1 | � 10 V and | V2 | � 30 kV; for
fast diodes used in switched mode power supply and inverter circuits, | V1 | � 0.7 − 1.5 V
and | V2 | � 3 kV and for Schottky diodes used in high frequency applications, | V1 |
� 0.2 − 0.9 V and | V2 | � 100 V.
The electrical superpotential of the practical diode is

ϕP D(x) =
⎧⎨
⎩

V1x if x ≥ 0

V2x if x < 0
, (x ∈ R).

Then

ϕ∗
P D(z) = I[V2,V1](z), (z ∈ R)
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Fig. 4 Clipping circuit 1: general diode as shunt element using, V1 = 0.1, V2 = −90, E = 1

and the recession function of the electrical superpotential is given by:

(ϕP D)∞(x) = ϕP D(x), (x ∈ R).

We see that

∂ϕP D(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V2 if x < 0

[V2, V1] if x = 0

V1 if x > 0

, (x ∈ R)

recovers the ampere–volt characteristic (i, V ) while

∂ϕ∗
P D(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R− if z = V2

0 if z ∈]V2, V1[

R+ if z = V1

∅ if z ∈ R\ [V2, V1]

, (z ∈ R).

recovers the volt–ampere characteristic (V, i). The ampere–volt characteristic of the practical
diode (Fig. 4) can thus be written as

V ∈ ∂ϕP D(i) ⇐⇒ i ∈ ∂ϕ∗
P D(V ) ⇐⇒ ϕP D(i) + ϕ∗

P D(V ) = iV .

We may follow the same steps as in the previous example to see that Kirchoff’s law reduces
to VI(R, E − u, ϕPD, IR), i.e.,

i ∈ K := R : (Ri + E − u)(v − i) + ϕP D(v) − ϕP D(i) ≥ 0, ∀v ∈ R.

Here R > 0 and for each E, u ∈ R, we may apply Theorem 1 to assert that (4) is stable in
the sense of Definition 2. Moreover:

i(t) = (idR + ∂ϕP D)−1
(

u(t) − E

R

)
= argminx∈R

{
1

2

∣∣∣∣x −
(

u(t) − E

R

)∣∣∣∣
2

+ ϕP D(x)

}
.

(33)
and

Vo(t) = u(t) − Ri(t). (34)
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Fig. 5 Double-diode clipper

u(t)

R

D1µ1
µ2

D2

Example 5 Let us consider the double-diode clipper circuit in Fig. 5 involving a load resis-
tance R > 0, two ideal diodes, an input-signal source and two supply voltages E1 and E2.
It is assumed that E1 < E2. We denote by i the current through the resistor R and we set
i = i1+i2 where −i1 denotes the current through diode D1 and i2 is the current through diode
D2. We denote by µ1 the difference of potential across diode D1 and by µ2 the difference
of potential across diode D2.

Using Kirchoff’s voltage laws, we get the system:⎧⎨
⎩

E1 + R(i1 + i2) − u = +µ1

E2 + R(i1 + i2) − u = −µ2

(35)

The ideal diodes D1 and D2 are simple switch. If µ1 < 0 (resp. µ2 < 0) then −i1 = 0 (resp.
i2 = 0) and the diode is blocking while if −i1 > 0 (resp. i2 > 0) then µ1 = 0 (resp. µ2 = 0)
and the diode is conducting. Thus

µ1 ≤ 0, −i1 ≥ 0, µ1i1 = 0

and

µ2 ≤ 0, −i2 ≥ 0, µ2i2 = 0.

These last complementarity relations can also be written as:

µ1 ∈ ∂ IR+(−i1) = −IR−(i1)

and

µ2 ∈ ∂ IR+(i2)

Setting

K = R− × R+, M =
⎛
⎝ R R

R R

⎞
⎠ , q =

⎛
⎝ E1 − u

E2 − u

⎞
⎠ , I =

⎛
⎝ i1

i2

⎞
⎠ , (36)

we see that the system in (35) is equivalent to the variational inequality VI(M, q, 0, K), i.e.,

I ∈ K : 〈M I + q, v − I 〉 ≥ 0, ∀v ∈ K . (37)
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Here the matrix M is positive semidefinite and symmetric,

K∞ ≡ K , ker{M} = {v ∈ R
2 : v2 = −v1}

and

K∞ ∩ ker{M} = {(−α, α);α ≥ 0}.
Moreover, for all v ∈ K∞ ∩ ker{M}, v 
= (0, 0) there exists α > 0 such that v = (−α, α)

and
〈q, v〉 = (E1 − u)v1 + (E2 − u)v2 = α(E2 − E1) > 0. (38)

We may thus apply Theorem 1 to assert that a double-diode clipper involving ideal diodes is
stable with respect to data perturbations in the sense of Definition 2.
Moreover, using the relations in (35) we see that:

i∗1 + i∗2 = min

{
i∗2 ,

u − E1

R

}
= max

{
i∗1 ,

u − E2

R

}

from which we deduce, after elementary calculations, that:

i∗ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u−E1
R if u < E1

0 if E1 ≤ u ≤ E2

u−E2
R if u > E2

.

So, for a driven time depending input t �→ u(t) the time depending current t �→ i∗(t) through
the resistor R is given by

i∗(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u(t)−E1
R if u(t) < E1

0 if E1 ≤ u(t) ≤ E2

u(t)−E2
R if u(t) > E2

(39)

and the output-signal t �→ Vo(t) defined by

Vo(t) = V2(t) + E2 = u(t) − Ri∗(t)

is then given by the expression:

Vo(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E1 if u(t) < E1

u(t) if E1 ≤ u(t) ≤ E2

E2 if u(t) > E2

. (40)

This shows that the circuit can be used to transmit the part of a given input-signal u that lies
above some level E1 and below some level E2 (Fig. 6).

Example 6 Let us again consider the circuit in Fig. 5 and suppose that the electrical super-
potential of each diodes D1 and D2 is given by (practical diode model):

ϕP D(x) =
⎧⎨
⎩

V1x if x ≥ 0

V2x if x < 0
, (x ∈ R)
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Fig. 6 Double-diode clipper: ideal diode, E1 = 0.1, E2 = 0.6

where V2 < 0 < V1. We suppose also that

| V2 | > E2 − E1

2
. (41)

We set

ϕ̄P D(x) = ϕP D(−x), ∀ x ∈ R

and
�(x) = ϕ̄P D(x1) + ϕP D(x2), ∀ (x1, x2) ∈ R

2. (42)

Kirchoff’s laws yield the system⎧⎨
⎩

E1 + R(i1 + i2) − u = +µ1 ∈ −∂ϕ̄P D(i1)

E2 + R(i1 + i2) − u = −µ2 ∈ −∂ϕP D(i2)

(43)

which is equivalent to the variational inequality VI(M, q,�, IR2), i.e.,

ϒ ∈ IR2 : 〈Mϒ + q, v − ϒ〉 + �(v) − �(ϒ) ≥ 0, ∀v ∈ R
2, (44)

with M and q as in (36) and � as in (42). Here

ker{M} = {v ∈ R
2 : v2 = −v1}.

Let v ∈ ker{M}, v 
= 0, be given. Then:

〈q, v〉 + �∞(v) = v2(E2 − E1) + ϕP D(−v1) + ϕP D(v2) = v2(E2 − E1) + 2ϕP D(v2).

It results that if v2 > 0 then

〈q, v〉 + �∞(v) = v2(E2 − E1) + 2V1v2

while if v2 < 0 then

〈q, v〉 + �∞(v) = −v2(2 | V2 | −(E2 − E1)) > 0.

We may then apply Theorem 1 to assert that the variational inequality VI(M, q,�, IR2) is
stable in the sense of Definition 2.
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Fig. 7 Double-diode clipper: practical diode

Fig. 8 Two rigid bodies
interconnected by a spring

Moreover, the function � is strictly convex and the solution ϒ∗ of (44) is unique and given
by:

ϒ∗ = argminx∈R2

{
1

2
〈Mx, x〉 + 〈q, x〉 + �(x)

}
. (45)

So, for a driven time depending input t �→ u(t) the time depending current t �→ i∗(t) through
the resistor R (Fig. 7) is given by

i∗(t) = i∗1 (t) + i∗2 (t) (46)

where

(
i∗1 (t) i∗2 (t)

)T = argminx∈R2

{
1

2
〈Mx, x〉 + (E1 − u(t))x1 + (E2 − u(t))x2 + �(x)

}

(47)
and the output-signal Vo can then be determined by the formula:

Vo(t) = u(t) − Ri∗(t).

Example 7 Let us consider the system of two rigid bodies M1 and M2 interconnected by
a spring of stiffness k > 0 and constrained to move only in the horizontal direction. The
position of M1 relative to the origin is represented by x1 while the position of M2 relative to
the origin is determined by x2 (Fig. 8).

The mass M1 is subjected to some external force q1 and static Coulomb friction force F1

while the mass M2 is subjected to some external force q2 and static Coulomb friction F2.
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The equilibrium states of the system are characterized by the equilibrium equations:

F1 + k(x2 − x1) + q1 = 0

and

F2 − k(x2 − x1) + q2 = 0.

Static friction Coulomb models for F1 and F2 are

F1 ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−µ if x1 < 0

[−µ,µ] if x1 = 0

+µ if x1 > 0

,

and

F2 ∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−µ if x2 < 0

[−µ,µ] if x2 = 0

+µ if x2 > 0

,

where µ > 0 denotes Coulomb friction coefficient. These set-valued relations can also be
written as

F1 ∈ −∂�(x1)

and

F2 ∈ −∂�(x2)

where

�(x) = µ|x |, (x ∈ IR).

Setting

�(x) = �(x1) + �(x2), ∀x = (x1, x2) ∈ IR2

and

M =
⎛
⎝ k −k

k −k

⎞
⎠ , q =

⎛
⎝ q1

q2

⎞
⎠ , X =

⎛
⎝ x1

x2

⎞
⎠ , (48)

we see that our equilibrium system is equivalent to the variational inequality VI(M,−q,

�, IR2), i.e.,

X ∈ IR2 : 〈M X + q, v − X〉 + �(v) − �(X) ≥ 0, ∀v ∈ IR2 . (49)

Here the matrix M is positive semidefinite and symmetric. Moreover

ker{M} = {v ∈ R
2 : v2 = v1}.

Suppose now that

|q1 + q2| < 2µ.
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For all v ∈ ker{M}, v 
= (0, 0) there exists α 
= 0 such that v = (α, α) and

�∞(v) + 〈q, v〉 = 2µ|α| + (q1 + q2)α. (50)

If α > 0 then

2µ|α| + (q1 + q2)α = (2µ + (q1 + q2))α > 0.

If α < 0 then

2µ|α| + (q1 + q2)α = (2µ − (q1 + q2))|α| > 0.

We may thus apply Theorem 1 to assert that our system is stable with respect to data pertur-
bations in the sense of Definition 2.
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